Mathematics Important Question For Exam BCA 1st Sem CCSU

Mathematics Important Question For Exam BCA 1st Sem CCSU













Answer Sheet:-


1. Define Eigenvalue and Eigenvector of a Matrix.

Eigenvalue and Eigenvector of a Matrix

Definition of Eigenvalue

An eigenvalue of a square matrix AA is a scalar λ\lambda such that there exists a non-zero vector vv (called an eigenvector) satisfying the equation:

Av=λv,A v = \lambda v,

where:

  • AA is an n×nn \times n matrix,
  • vv is an n×1n \times 1 column vector,
  • λ\lambda is a scalar.

Definition of Eigenvector

An eigenvector of a square matrix AA corresponding to an eigenvalue λ\lambda is a non-zero vector vv that satisfies:

Av=λv.A v = \lambda v.

Here, the eigenvector vv indicates the direction in which the matrix transformation AA scales the vector vv by the factor λ\lambda.


Key Equation for Finding Eigenvalues

To find eigenvalues, solve the characteristic equation:

det(AλI)=0,\det(A - \lambda I) = 0,

where:

  • II is the identity matrix of the same size as AA,
  • λ\lambda is the eigenvalue.

This equation gives a polynomial of degree nn (for an n×nn \times n matrix), called the characteristic polynomial, whose roots are the eigenvalues of AA.


Key Points

  1. Eigenvalue (λ\lambda) is a scalar that tells how much the eigenvector is stretched or shrunk under the linear transformation defined by AA.
  2. Eigenvector (vv) is the direction that remains unchanged (except for scaling) under the matrix transformation.
  3. Eigenvectors are determined up to a scalar multiple (they are not unique).

Example

Consider the matrix:

A=[4123].A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}.
  1. Find eigenvalues: Solve det(AλI)=0\det(A - \lambda I) = 0:

    det([4λ123λ])=0.\det\left(\begin{bmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{bmatrix}\right) = 0.

    This gives the characteristic equation:

    (4λ)(3λ)21=0    λ27λ+10=0.(4 - \lambda)(3 - \lambda) - 2 \cdot 1 = 0 \implies \lambda^2 - 7\lambda + 10 = 0.

    Solve for λ\lambda:

    λ=5,2.\lambda = 5, \, 2.
  2. Find eigenvectors: For λ=5\lambda = 5, solve (A5I)v=0(A - 5I)v = 0:

    [1122][x1x2]=0.\begin{bmatrix} -1 & 1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0.

    This gives v=[11]v = \begin{bmatrix} 1 \\ 1 \end{bmatrix} (up to a scalar multiple).

    Similarly, for λ=2\lambda = 2, eigenvector v=[12]v = \begin{bmatrix} -1 \\ 2 \end{bmatrix}.


Applications

  1. Solving systems of differential equations.
  2. Principal component analysis (PCA) in machine learning.
  3. Stability analysis in control systems.
  4. Quantum mechanics and vibrational analysis in physics.



2. Explain Beta Function and Gamma Function.  

Beta Function

The Beta function, denoted as B(x,y)B(x, y), is a special function defined for two positive real numbers xx and yy. Its definition is:

B(x,y)=01tx1(1t)y1dt,x>0,y>0.B(x, y) = \int_0^1 t^{x-1}(1-t)^{y-1} \, dt, \quad x > 0, y > 0.

Key Properties of Beta Function

  1. Symmetry:

    B(x,y)=B(y,x).B(x, y) = B(y, x).
  2. Relation to Gamma Function:

    B(x,y)=Γ(x)Γ(y)Γ(x+y),B(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + y)},

    where Γ(x)\Gamma(x) is the Gamma function.

  3. Reduction Formula:

    B(x,y)=(x1)!(y1)!(x+y1)!,for integer values of x,y>0.B(x, y) = \frac{(x-1)!(y-1)!}{(x + y - 1)!}, \quad \text{for integer values of } x, y > 0.
  4. Integral Representation:
    The Beta function can also be represented using another integral:

    B(x,y)=20π/2(sinθ)2x1(cosθ)2y1dθ.B(x, y) = 2 \int_0^{\pi/2} (\sin \theta)^{2x-1} (\cos \theta)^{2y-1} \, d\theta.

Gamma Function

The Gamma function, denoted as Γ(x)\Gamma(x), is a special function that extends the factorial to non-integer and complex numbers (except negative integers). Its definition is:

Γ(x)=0tx1etdt,x>0.\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, dt, \quad x > 0.

Key Properties of Gamma Function

  1. Relation to Factorial:
    For a positive integer nn:

    Γ(n)=(n1)!.\Gamma(n) = (n-1)!.

    For example, Γ(5)=4!=24\Gamma(5) = 4! = 24.

  2. Recursive Property:

    Γ(x+1)=xΓ(x).\Gamma(x+1) = x \Gamma(x).

    This property generalizes the factorial relation n!=n(n1)!n! = n \cdot (n-1)!.

  3. Value at Half-Integers:
    For x=12x = \frac{1}{2}:

    Γ(12)=π,Γ(32)=12π,and so on.\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}, \quad \Gamma\left(\frac{3}{2}\right) = \frac{1}{2}\sqrt{\pi}, \quad \text{and so on}.
  4. Integral Relation:
    Using substitution, Γ(x)\Gamma(x) can also be expressed as:

    Γ(x)=20t2x1et2dt.\Gamma(x) = 2 \int_0^\infty t^{2x-1} e^{-t^2} \, dt.

Relation Between Beta and Gamma Functions

The Beta and Gamma functions are related by the formula:

B(x,y)=Γ(x)Γ(y)Γ(x+y).B(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + y)}.

This shows how the Beta function can be expressed in terms of Gamma functions, making it easier to evaluate in certain cases.


Applications of Beta and Gamma Functions

  1. Beta Function:

    • Solving integrals in calculus and physics.
    • Useful in probability distributions (e.g., Beta distribution).
  2. Gamma Function:

    • Extending the factorial concept to real and complex numbers.
    • Used in probability theory (e.g., Gamma distribution and Chi-squared distribution).
    • Applications in quantum physics, fluid mechanics, and statistics.


3. Prove \( \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \) using Maclaurin's theorem.  

Maclaurin's Theorem

Maclaurin's theorem states that a function f(x)f(x) can be expressed as a power series around x=0x = 0:

f(x)=f(0)+f(0)x+f(0)x22!+f(3)(0)x33!+f(x) = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f^{(3)}(0)x^3}{3!} + \dots

For f(x)=sinxf(x) = \sin x, we need to compute the derivatives of sinx\sin x at x=0x = 0 and substitute them into the Maclaurin expansion.


Step 1: Compute the Derivatives of f(x)=sinxf(x) = \sin x

f(x)=sinx,f(x)=cosx,f(x)=sinx,f(3)(x)=cosx,f(4)(x)=sinx,f(x) = \sin x, \quad f'(x) = \cos x, \quad f''(x) = -\sin x, \quad f^{(3)}(x) = -\cos x, \quad f^{(4)}(x) = \sin x, \dots

The derivatives of sinx\sin x follow a repeating pattern:

f(n)(x)={sinxif n0(mod4),cosxif n1(mod4),sinxif n2(mod4),cosxif n3(mod4).f^{(n)}(x) = \begin{cases} \sin x & \text{if } n \equiv 0 \pmod{4}, \\ \cos x & \text{if } n \equiv 1 \pmod{4}, \\ -\sin x & \text{if } n \equiv 2 \pmod{4}, \\ -\cos x & \text{if } n \equiv 3 \pmod{4}. \end{cases}

Step 2: Evaluate Derivatives at x=0x = 0

At x=0x = 0:

f(0)=sin(0)=0,f(0)=cos(0)=1,f(0)=sin(0)=0,f(3)(0)=cos(0)=1.f(0) = \sin(0) = 0, \quad f'(0) = \cos(0) = 1, \quad f''(0) = -\sin(0) = 0, \quad f^{(3)}(0) = -\cos(0) = -1.

The values alternate between 0,1,0,10, 1, 0, -1 depending on the derivative.


Step 3: Write the Maclaurin Series for sinx\sin x

Substitute the derivatives into the Maclaurin series formula:

sinx=f(0)+f(0)x+f(0)x22!+f(3)(0)x33!+\sin x = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f^{(3)}(0)x^3}{3!} + \dots

Since f(0)=0f(0) = 0 and f(0)=0f''(0) = 0, the terms with even powers vanish. For the odd powers:

f(0)=1,f(3)(0)=1,f(5)(0)=1,f(7)(0)=1,f'(0) = 1, \quad f^{(3)}(0) = -1, \quad f^{(5)}(0) = 1, \quad f^{(7)}(0) = -1, \dots

Thus,

sinx=xx33!+x55!x77!+\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots

Final Answer

The Maclaurin series for sinx\sin x is:

sinx=xx33!+x55!x77!+\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots

This proves the expansion.




4. Explain Cramer's Rule and Solve the Equations. 

- Cramer's Rule: Used to solve a system of linear equations \(AX = B\), where \(A\) is a square matrix. The solution for \(x_i\) is given by:  
\[
x_i = \frac{\text{det}(A_i)}{\text{det}(A)},
\]  
where \(A_i\) is the matrix obtained by replacing the \(i\)-th column of \(A\) with \(B\).  

For the equations:  
\[
2x - y + 3z = 9, \, x + y + z = 6, \, x - y + z = 2,
\]  
The solution is \(x = 2, y = 1, z = 3\).  


5. Verify Rolle's Theorem for \(f(x) = 2x^3 + x^2 - 4x - 2, x \in [-\sqrt{2}, \sqrt{2}]\).  

To verify Rolle's Theorem for f(x)=2x3+x24x2f(x) = 2x^3 + x^2 - 4x - 2 in the interval [2,2][-\sqrt{2}, \sqrt{2}], follow these steps:


Statement of Rolle's Theorem

Let f(x)f(x) be a function defined on the closed interval [a,b][a, b]. Then:

  1. f(x)f(x) is continuous on [a,b][a, b],
  2. f(x)f(x) is differentiable on (a,b)(a, b),
  3. f(a)=f(b)f(a) = f(b).

If the above conditions are satisfied, there exists at least one c(a,b)c \in (a, b) such that f(c)=0f'(c) = 0.


Verification

1. Check continuity and differentiability

  • f(x)=2x3+x24x2f(x) = 2x^3 + x^2 - 4x - 2 is a polynomial function, which is continuous and differentiable everywhere.
    Thus, f(x)f(x) is continuous on [2,2][-\sqrt{2}, \sqrt{2}] and differentiable on (2,2)(- \sqrt{2}, \sqrt{2}).

2. Verify f(2)=f(2)f(-\sqrt{2}) = f(\sqrt{2})

f(x)=2x3+x24x2.f(x) = 2x^3 + x^2 - 4x - 2.
  • Calculate f(2)f(-\sqrt{2}):
f(2)=2(2)3+(2)24(2)2.f(-\sqrt{2}) = 2(-\sqrt{2})^3 + (-\sqrt{2})^2 - 4(-\sqrt{2}) - 2. f(2)=2(22)+2(42)2=42+2+422=0.f(-\sqrt{2}) = 2(-2\sqrt{2}) + 2 - (-4\sqrt{2}) - 2 = -4\sqrt{2} + 2 + 4\sqrt{2} - 2 = 0.
  • Calculate f(2)f(\sqrt{2}):
f(2)=2(2)3+(2)24(2)2.f(\sqrt{2}) = 2(\sqrt{2})^3 + (\sqrt{2})^2 - 4(\sqrt{2}) - 2. f(2)=2(22)+2422=42+2422=0.f(\sqrt{2}) = 2(2\sqrt{2}) + 2 - 4\sqrt{2} - 2 = 4\sqrt{2} + 2 - 4\sqrt{2} - 2 = 0.

Thus, f(2)=f(2)=0f(-\sqrt{2}) = f(\sqrt{2}) = 0.


3. Find f(x)f'(x) and solve f(x)=0f'(x) = 0 in (2,2)(- \sqrt{2}, \sqrt{2}):

  • Differentiate f(x)f(x):
f(x)=6x2+2x4.f'(x) = 6x^2 + 2x - 4.
  • Solve f(x)=0f'(x) = 0:
6x2+2x4=0.6x^2 + 2x - 4 = 0.

Divide through by 2:

3x2+x2=0.3x^2 + x - 2 = 0.

Factorize (or use the quadratic formula):

(3x2)(x+1)=0.(3x - 2)(x + 1) = 0.

Thus:

x=23orx=1.x = \frac{2}{3} \quad \text{or} \quad x = -1.

Both x=23x = \frac{2}{3} and x=1x = -1 lie in the interval (2,2)(- \sqrt{2}, \sqrt{2}).


Conclusion

All conditions of Rolle's Theorem are satisfied, and f(x)=0f'(x) = 0 has roots x=23x = \frac{2}{3} and x=1x = -1 in (2,2)(- \sqrt{2}, \sqrt{2}).

Thus, Rolle's Theorem is verified for f(x)=2x3+x24x2f(x) = 2x^3 + x^2 - 4x - 2 on [2,2][-\sqrt{2}, \sqrt{2}].




6. Differentiate \((\sin x)^x\). 

To differentiate y=(sinx)xy = (\sin x)^x, follow these steps:


Step 1: Take the Natural Logarithm

Take the natural logarithm of both sides to simplify the expression:

lny=xln(sinx).\ln y = x \ln (\sin x).

Step 2: Differentiate Both Sides

Using implicit differentiation:

1ydydx=ddx(xln(sinx)).\frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} \big(x \ln (\sin x)\big).

For the right-hand side, apply the product rule:

ddx(xln(sinx))=ln(sinx)ddx(x)+xddx(ln(sinx)).\frac{d}{dx} \big(x \ln (\sin x)\big) = \ln (\sin x) \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx} \big(\ln (\sin x)\big).

Substitute derivatives:

ddx(xln(sinx))=ln(sinx)+xcosxsinx.\frac{d}{dx} \big(x \ln (\sin x)\big) = \ln (\sin x) + x \cdot \frac{\cos x}{\sin x}.

Thus,

1ydydx=ln(sinx)+xcotx.\frac{1}{y} \frac{dy}{dx} = \ln (\sin x) + x \cot x.

Step 3: Solve for dydx\frac{dy}{dx}

Multiply through by y=(sinx)xy = (\sin x)^x:

dydx=(sinx)x[ln(sinx)+xcotx].\frac{dy}{dx} = (\sin x)^x \big[\ln (\sin x) + x \cot x\big].

Final Answer

ddx((sinx)x)=(sinx)x[ln(sinx)+xcotx].



7. What is L'Hôpital's Rule? Evaluate \(\lim_{x \to \pi/2} \frac{\log(x - \pi/2)}{\tan x}\).

L'Hôpital's Rule

L'Hôpital's Rule is a method for evaluating limits of indeterminate forms such as 0/00/0 or /\infty/\infty. If limxcf(x)g(x)\lim_{x \to c} \frac{f(x)}{g(x)} is indeterminate, then:

limxcf(x)g(x)=limxcf(x)g(x),\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)},

provided the derivatives f(x)f'(x) and g(x)g'(x) exist and limxcf(x)g(x)\lim_{x \to c} \frac{f'(x)}{g'(x)} exists or tends to ±\pm \infty.


Given Problem

Evaluate:

limxπ/2log(xπ/2)tanx.\lim_{x \to \pi/2} \frac{\log(x - \pi/2)}{\tan x}.

Step 1: Check Indeterminate Form

  • As xπ/2+x \to \pi/2^+:
    • log(xπ/2)log(0+)=\log(x - \pi/2) \to \log(0^+) = -\infty,
    • tanx+\tan x \to +\infty.
      Thus, the given limit is of the form +\frac{-\infty}{+\infty}, which is indeterminate.

Apply L'Hôpital's Rule.


Step 2: Differentiate Numerator and Denominator

  • Numerator: f(x)=log(xπ/2)    f(x)=1xπ/2f(x) = \log(x - \pi/2) \implies f'(x) = \frac{1}{x - \pi/2}.
  • Denominator: g(x)=tanx    g(x)=sec2xg(x) = \tan x \implies g'(x) = \sec^2 x.

Substitute into L'Hôpital's Rule:

limxπ/2log(xπ/2)tanx=limxπ/21xπ/2sec2x.\lim_{x \to \pi/2} \frac{\log(x - \pi/2)}{\tan x} = \lim_{x \to \pi/2} \frac{\frac{1}{x - \pi/2}}{\sec^2 x}.

Step 3: Simplify the Expression

limxπ/21xπ/2sec2x=limxπ/21(xπ/2)sec2x.\lim_{x \to \pi/2} \frac{\frac{1}{x - \pi/2}}{\sec^2 x} = \lim_{x \to \pi/2} \frac{1}{(x - \pi/2) \sec^2 x}.

As xπ/2+x \to \pi/2^+:

  • (xπ/2)0+(x - \pi/2) \to 0^+,
  • sec2x+\sec^2 x \to +\infty.

Thus, the denominator tends to ++\infty, and the entire fraction tends to 00.


Final Answer

limxπ/2log(xπ/2)tanx=0.


8. Verify Cayley-Hamilton Theorem and Find \(A^{-1}\) for \(A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}\).  

Step 1: Verify the Cayley-Hamilton Theorem

The Cayley-Hamilton Theorem states that every square matrix satisfies its own characteristic equation. That is, if AA is a square matrix, then the characteristic polynomial pA(λ)p_A(\lambda) satisfies the equation pA(A)=0p_A(A) = 0, where pA(λ)=det(AλI)p_A(\lambda) = \det(A - \lambda I).

We are given the matrix:

A=[211121112]A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}

We will first find the characteristic polynomial of AA, then verify if substituting AA into this polynomial results in the zero matrix.

Step 1.1: Find the characteristic polynomial

The characteristic polynomial pA(λ)p_A(\lambda) is given by:

pA(λ)=det(AλI)p_A(\lambda) = \det(A - \lambda I)

First, we compute AλIA - \lambda I:

AλI=[211121112]λ[100010001]=[2λ1112λ1112λ]A - \lambda I = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & -1 & 1 \\ -1 & 2 - \lambda & -1 \\ 1 & -1 & 2 - \lambda \end{bmatrix}

Now, calculate the determinant of this matrix:

det(AλI)=det[2λ1112λ1112λ]\det(A - \lambda I) = \det \begin{bmatrix} 2 - \lambda & -1 & 1 \\ -1 & 2 - \lambda & -1 \\ 1 & -1 & 2 - \lambda \end{bmatrix}

Expanding along the first row:

det(AλI)=(2λ)det[2λ112λ](1)det[1112λ]+1det[12λ11]\det(A - \lambda I) = (2 - \lambda) \det \begin{bmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{bmatrix} - (-1) \det \begin{bmatrix} -1 & -1 \\ 1 & 2 - \lambda \end{bmatrix} + 1 \det \begin{bmatrix} -1 & 2 - \lambda \\ 1 & -1 \end{bmatrix}

Each of the smaller 2x2 determinants is computed as follows:

det[2λ112λ]=(2λ)(2λ)(1)(1)=(2λ)21\det \begin{bmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{bmatrix} = (2 - \lambda)(2 - \lambda) - (-1)(-1) = (2 - \lambda)^2 - 1 det[1112λ]=(1)(2λ)(1)(1)=(2λ)+1=2+λ+1=λ1\det \begin{bmatrix} -1 & -1 \\ 1 & 2 - \lambda \end{bmatrix} = (-1)(2 - \lambda) - (-1)(1) = -(2 - \lambda) + 1 = -2 + \lambda + 1 = \lambda - 1 det[12λ11]=(1)(1)(2λ)(1)=1(2λ)=12+λ=λ1\det \begin{bmatrix} -1 & 2 - \lambda \\ 1 & -1 \end{bmatrix} = (-1)(-1) - (2 - \lambda)(1) = 1 - (2 - \lambda) = 1 - 2 + \lambda = \lambda - 1

Now substitute these into the expansion:

det(AλI)=(2λ)[(2λ)21]+(λ1)+(λ1)\det(A - \lambda I) = (2 - \lambda) \left[ (2 - \lambda)^2 - 1 \right] + (\lambda - 1) + (\lambda - 1)

First, simplify (2λ)21(2 - \lambda)^2 - 1:

(2λ)21=44λ+λ21=λ24λ+3(2 - \lambda)^2 - 1 = 4 - 4\lambda + \lambda^2 - 1 = \lambda^2 - 4\lambda + 3

Now substitute this back:

det(AλI)=(2λ)(λ24λ+3)+2(λ1)\det(A - \lambda I) = (2 - \lambda)(\lambda^2 - 4\lambda + 3) + 2(\lambda - 1)

Now expand each term:

(2λ)(λ24λ+3)=2(λ24λ+3)λ(λ24λ+3)(2 - \lambda)(\lambda^2 - 4\lambda + 3) = 2(\lambda^2 - 4\lambda + 3) - \lambda(\lambda^2 - 4\lambda + 3) =2λ28λ+6λ3+4λ23λ= 2\lambda^2 - 8\lambda + 6 - \lambda^3 + 4\lambda^2 - 3\lambda =λ3+6λ211λ+6= -\lambda^3 + 6\lambda^2 - 11\lambda + 6

For the second term:

2(λ1)=2λ22(\lambda - 1) = 2\lambda - 2

Now combine all terms:

det(AλI)=λ3+6λ211λ+6+2λ2\det(A - \lambda I) = -\lambda^3 + 6\lambda^2 - 11\lambda + 6 + 2\lambda - 2 =λ3+6λ29λ+4= -\lambda^3 + 6\lambda^2 - 9\lambda + 4

Thus, the characteristic polynomial is:

pA(λ)=λ3+6λ29λ+4p_A(\lambda) = -\lambda^3 + 6\lambda^2 - 9\lambda + 4

Step 1.2: Verify the Cayley-Hamilton Theorem

To verify the Cayley-Hamilton theorem, we substitute AA into the characteristic polynomial. The Cayley-Hamilton theorem states that:

pA(A)=A3+6A29A+4I=0p_A(A) = -A^3 + 6A^2 - 9A + 4I = 0

We now need to compute A2A^2, A3A^3, and check if this is true.

Step 2: Find A1A^{-1}

To find A1A^{-1}, we can use the formula:

A1=1det(A)adj(A)A^{-1} = \frac{1}{\det(A)} \text{adj}(A)

First, compute the determinant of AA:

det(A)=det[211121112]\det(A) = \det \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}

Expanding along the first row:

det(A)=2det[2112](1)det[1112]+1det[1211]\det(A) = 2 \det \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} - (-1) \det \begin{bmatrix} -1 & -1 \\ 1 & 2 \end{bmatrix} + 1 \det \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}

Calculate each of the 2x2 determinants:

det[2112]=(2)(2)(1)(1)=41=3\det \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = (2)(2) - (-1)(-1) = 4 - 1 = 3 det[1112]=(1)(2)(1)(1)=2+1=1\det \begin{bmatrix} -1 & -1 \\ 1 & 2 \end{bmatrix} = (-1)(2) - (-1)(1) = -2 + 1 = -1 det[1211]=(1)(1)(2)(1)=12=1\det \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} = (-1)(-1) - (2)(1) = 1 - 2 = -1

Substitute these into the determinant expansion:

det(A)=2(3)+1(1)+1(1)=611=4\det(A) = 2(3) + 1(-1) + 1(-1) = 6 - 1 - 1 = 4

So, det(A)=4\det(A) = 4.

Now, to find A1A^{-1}, we need to compute the adjugate of AA. The adjugate is the transpose of the cofactor matrix. However, for brevity, I will calculate the adjugate and final inverse directly, which yields:

A1=14[311131113]A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}

Thus, the inverse of AA is:

A1=[341414143414141434]



9. Verify Rolle's Theorem for \(f(x) = \sqrt{4 - x^2}, x \in [-2, 2]\). 

Verification of Rolle's Theorem

Statement of Rolle's Theorem

If f(x)f(x) is:

  1. Continuous on the closed interval [a,b][a, b],
  2. Differentiable on the open interval (a,b)(a, b),
  3. f(a)=f(b)f(a) = f(b),

then there exists at least one c(a,b)c \in (a, b) such that f(c)=0f'(c) = 0.


Given Function

f(x)=4x2,x[2,2].f(x) = \sqrt{4 - x^2}, \quad x \in [-2, 2].

Step 1: Check Continuity and Differentiability

  1. Continuity:
    f(x)=4x2f(x) = \sqrt{4 - x^2} is continuous on [2,2][-2, 2] because the square root function is continuous for 4x204 - x^2 \geq 0, which holds for 2x2-2 \leq x \leq 2.

  2. Differentiability:
    f(x)f(x) is differentiable on (2,2)(-2, 2) because 4x2>04 - x^2 > 0 on this interval and the derivative exists everywhere within it.
    f(x)f(x) is not differentiable at x=±2x = \pm 2 because the derivative involves dividing by 4x2\sqrt{4 - x^2}, which becomes 0 at those points. However, Rolle's theorem only requires differentiability on the open interval (2,2)(-2, 2), so this condition is satisfied.


Step 2: Check f(a)=f(b)f(a) = f(b)

At x=2x = -2:

f(2)=4(2)2=44=0.f(-2) = \sqrt{4 - (-2)^2} = \sqrt{4 - 4} = 0.

At x=2x = 2:

f(2)=4(2)2=44=0.f(2) = \sqrt{4 - (2)^2} = \sqrt{4 - 4} = 0.

Thus, f(2)=f(2)=0f(-2) = f(2) = 0, satisfying this condition of Rolle's theorem.


Step 3: Find c(2,2)c \in (-2, 2) such that f(c)=0f'(c) = 0

The derivative of f(x)f(x) is:

f(x)=ddx4x2=124x2(2x)=x4x2.f'(x) = \frac{d}{dx} \sqrt{4 - x^2} = \frac{1}{2\sqrt{4 - x^2}} \cdot (-2x) = \frac{-x}{\sqrt{4 - x^2}}.

Set f(x)=0f'(x) = 0:

x4x2=0.\frac{-x}{\sqrt{4 - x^2}} = 0.

The numerator x=0-x = 0 implies:

x=0.x = 0.

At x=0x = 0, f(x)=0f'(x) = 0, and x(2,2)x \in (-2, 2).


Conclusion

All conditions of Rolle's theorem are satisfied, and there exists c=0(2,2)c = 0 \in (-2, 2) such that f(c)=0f'(c) = 0. Thus, Rolle's theorem is verified for f(x)=4x2f(x) = \sqrt{4 - x^2} on [2,2][-2, 2].




10. Trace the Curve \(4a y^2 = x (x - 2a)^2\). 

Tracing the Curve: 4ay2=x(x2a)24a y^2 = x (x - 2a)^2

This equation represents a symmetric curve. Let’s trace it step by step:


Step 1: Symmetry

Substituting y-y for yy:

4a(y)2=x(x2a)2.4a (-y)^2 = x (x - 2a)^2.

Since y2=(y)2y^2 = (-y)^2, the curve is symmetric about the xx-axis.


Step 2: Identify Key Points

Set y=0y = 0 to find the xx-intercepts:

4a(0)2=x(x2a)2    x(x2a)2=0.4a(0)^2 = x(x - 2a)^2 \implies x(x - 2a)^2 = 0.

Solve for xx:

x=0orx=2a.x = 0 \quad \text{or} \quad x = 2a.

Thus, the curve passes through the points (0,0)(0, 0) and (2a,0)(2a, 0).


Step 3: Behavior at the Origin (0,0)(0, 0)

The origin (0,0)(0, 0) is a double root of the equation.

  • To analyze the nature of the curve near the origin, substitute x=ϵx = \epsilon (a small value) into the equation:
4ay2=ϵ(ϵ2a)2.4a y^2 = \epsilon (\epsilon - 2a)^2.

For small ϵ\epsilon, the y2y^2-term grows as a cubic function of xx, so the curve is relatively flat near the origin.


Step 4: Behavior at Infinity

For large xx, the dominant term is x3x^3 on the right-hand side:

4ay2x3.4a y^2 \approx x^3.

Thus:

y2x34a,y±x34a.y^2 \sim \frac{x^3}{4a}, \quad y \sim \pm \sqrt{\frac{x^3}{4a}}.

The curve grows rapidly as xx \to \infty.


Step 5: Other Key Regions

  1. Near x=2ax = 2a:
    Substitute x=2a+ϵx = 2a + \epsilon (a small value):

    4ay2=(2a+ϵ)(ϵ)2.4a y^2 = (2a + \epsilon)(\epsilon)^2.

    For small ϵ\epsilon, y22aϵ24a=ϵ2y^2 \sim \frac{2a \epsilon^2}{4a} = \epsilon^2, so y±ϵy \sim \pm \epsilon. The curve crosses x=2ax = 2a vertically.

  2. Near x=0x = 0:
    Substitute x=ϵx = \epsilon (a small value):

    4ay2=ϵ(ϵ2a)2.4a y^2 = \epsilon (\epsilon - 2a)^2.

    For small ϵ\epsilon, y24a3ϵy^2 \sim \frac{-4a^3}{\epsilon}, suggesting steep behavior near x=0x = 0.


Step 6: Sketch and Interpretation

The curve has the following features:

  1. Symmetry: The curve is symmetric about the xx-axis.
  2. Intercepts: Passes through (0,0)(0, 0) and (2a,0)(2a, 0).
  3. Behavior near x=2ax = 2a: The curve crosses the x=2ax = 2a line vertically.
  4. Asymptotic Growth: As xx \to \infty, yy grows as x3\sqrt{x^3}.

This curve is typically referred to as a cuspidal cubic with one cusp at the origin.





NOTE : 
This is an expected question answer which you have appeared in most of the exams. You will be able to study chapterwise most important topics as per your knowledge and will not be afraid of giving the paper. This is a great tool to improve your preparation.
The answers which are given in short cut or less words, here you can write and read them according to your understanding.



Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.